Our gut talks and sometimes argues with our brain

To do this, the team used mouse organoids — basically, organs in a dish. The researchers isolated intestinal stem cells and used them to grow “3-D mini-guts.” They challenged the mini-guts with different stimuli and measured the resulting electrical responses. The method produced “a very elegant model,” noted Diego Bohorquez, assistant professor of medicine and neurology at Duke University, who was not involved in the research.

Gut epithelial cells are known to respond to mechanical stimulation. That’s how our stomach signals that it’s full. But the researchers found that even a light touch with certain compounds triggered an intense reaction. The EC cells were especially sensitive to adrenaline and the chemicals that give wasabi and horseradish their strong flavor. Plants in the mustard family evolved these compounds to protect themselves from insects. Our gut perceives them as a danger, causing inflammation.

To figure out the consequences of aggravating EC cells, the researchers used mice in which the cells were tagged with fluorescent molecules. They found that EC cells contain receptors that recognize adrenaline, spicy food compounds and foul smells such as sweaty socks or stinky cheese. They then showed that these cells form associations with nerve fibers and produce compounds that are a hallmark of synapses — the connections between nerves. When challenged with adrenaline-like compounds, the EC cells became electrically charged. And that produced a rush of serotonin that activated the nearby nerve fiber.

Bohorquez called this discovery “an important step forward” because it demonstrates what scientists have long suspected: Chemical stimulants electrically excite cells lining the gut, which then directly communicate with nerve cells.

“There is really a gut skin cell that sits there and fires action potential like a nerve cell,” said Arthur Beyder, who studies EC cells at the Mayo Clinic. “It’s like a Morse code … they’re communicating.” The fact that these cells are activated by adrenaline means the brain is in touch with the gut, as well. But we don’t know why. “It could be communicating with the microbiome,” Beyder suggested.

These EC cells appear to specifically recognize compounds that could serve as a threat or reflect injury. “So you’ve got the central nervous system and the gut brain. Sometimes they talk, and sometimes they argue, and you get these gut pains,” Bayrer explained. “When EC cells detect an irritant, they speed up our bowels to get rid of the offender.”

ngraham noted that intestinal disorders are becoming more common, especially as people age. “We don’t like to talk about these issues, but constipation and diarrhea are seriously debilitating,” she said. EC cells are probably hypersensitive in people with irritable bowel syndrome. Patients often complain of discomfort or irritation, but there is not a measurable amount of inflammation. Greater understanding of normal epithelial cell activities could improve the diagnosis of IBS, Bayrer said.

Bohorquez suggested that follow-up research could lead to new drugs to block EC receptors or even the use of electrical devices to minimize EC activity. An important next step will be determining if EC cells also affect the immune system, because “immune cells cruise along underneath epithelial cells,” Bayrer added.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *